Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Diverse AvrPtoB homologs from several Pseudomonas syringae pathovars elicit Pto-dependent resistance and have similar virulence activities.

Identifieur interne : 000760 ( Main/Exploration ); précédent : 000759; suivant : 000761

Diverse AvrPtoB homologs from several Pseudomonas syringae pathovars elicit Pto-dependent resistance and have similar virulence activities.

Auteurs : Nai-Chun Lin [États-Unis] ; Robert B. Abramovitch ; Young Jin Kim ; Gregory B. Martin

Source :

RBID : pubmed:16391110

Descripteurs français

English descriptors

Abstract

AvrPtoB is a type III effector protein from Pseudomonas syringae pv. tomato that physically interacts with the tomato Pto kinase and, depending on the host genotype, either elicits or suppresses programmed cell death associated with plant immunity. We reported previously that avrPtoB-related sequences are present in diverse gram-negative phytopathogenic bacteria. Here we describe characterization of avrPtoB homologs from P. syringae pv. tomato T1, PT23, and JL1065, P. syringae pv. syringae B728a, and P. syringae pv. maculicola ES4326. The avrPtoB homolog from P. syringae pv. maculicola, hopPmaL, was identified previously. The four new genes identified in this study are designated avrPtoB(T1), avrPtoB(PT23), avrPtoB(JL1065), and avrPtoB(B728a). The AvrPtoB homologs exhibit 52 to 66% amino acid identity with AvrPtoB. Transcripts of each of the avrPtoB homologs were detected in the Pseudomonas strains from which they were isolated. Proteins encoded by the homologs were detected in all strains except P. syringae pv. tomato T1, suggesting that T1 suppresses accumulation of AvrPtoB(T1). All of the homologs interacted with the Pto kinase in a yeast two-hybrid system and elicited a Pto-dependent defense response when they were delivered into leaf cells by DC3000DeltaavrPtoDeltaavrPtoB, a P. syringae pv. tomato strain with a deletion of both avrPto and avrPtoB. Like AvrPtoB, all of the homologs enhanced the ability of DC3000DeltaavrPtoDeltaavrPtoB to form lesions on leaves of two susceptible tomato lines. With the exception of HopPmaL which lacks the C-terminal domain, all AvrPtoB homologs suppressed programmed cell death elicited by the AvrPto-Pto interaction in an Agrobacterium-mediated transient assay. Thus, despite their divergent sequences, AvrPtoB homologs from diverse P. syringae pathovars have conserved avirulence and virulence activities similar to AvrPtoB activity.

DOI: 10.1128/AEM.72.1.702-712.2006
PubMed: 16391110
PubMed Central: PMC1352197


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Diverse AvrPtoB homologs from several Pseudomonas syringae pathovars elicit Pto-dependent resistance and have similar virulence activities.</title>
<author>
<name sortKey="Lin, Nai Chun" sort="Lin, Nai Chun" uniqKey="Lin N" first="Nai-Chun" last="Lin">Nai-Chun Lin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Boyce Thompson Institute for Plant Research, Tower Rd., Ithaca, NY 14853-1801, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Boyce Thompson Institute for Plant Research, Tower Rd., Ithaca, NY 14853-1801</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Abramovitch, Robert B" sort="Abramovitch, Robert B" uniqKey="Abramovitch R" first="Robert B" last="Abramovitch">Robert B. Abramovitch</name>
</author>
<author>
<name sortKey="Kim, Young Jin" sort="Kim, Young Jin" uniqKey="Kim Y" first="Young Jin" last="Kim">Young Jin Kim</name>
</author>
<author>
<name sortKey="Martin, Gregory B" sort="Martin, Gregory B" uniqKey="Martin G" first="Gregory B" last="Martin">Gregory B. Martin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16391110</idno>
<idno type="pmid">16391110</idno>
<idno type="doi">10.1128/AEM.72.1.702-712.2006</idno>
<idno type="pmc">PMC1352197</idno>
<idno type="wicri:Area/Main/Corpus">000774</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000774</idno>
<idno type="wicri:Area/Main/Curation">000774</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000774</idno>
<idno type="wicri:Area/Main/Exploration">000774</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Diverse AvrPtoB homologs from several Pseudomonas syringae pathovars elicit Pto-dependent resistance and have similar virulence activities.</title>
<author>
<name sortKey="Lin, Nai Chun" sort="Lin, Nai Chun" uniqKey="Lin N" first="Nai-Chun" last="Lin">Nai-Chun Lin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Boyce Thompson Institute for Plant Research, Tower Rd., Ithaca, NY 14853-1801, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Boyce Thompson Institute for Plant Research, Tower Rd., Ithaca, NY 14853-1801</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Abramovitch, Robert B" sort="Abramovitch, Robert B" uniqKey="Abramovitch R" first="Robert B" last="Abramovitch">Robert B. Abramovitch</name>
</author>
<author>
<name sortKey="Kim, Young Jin" sort="Kim, Young Jin" uniqKey="Kim Y" first="Young Jin" last="Kim">Young Jin Kim</name>
</author>
<author>
<name sortKey="Martin, Gregory B" sort="Martin, Gregory B" uniqKey="Martin G" first="Gregory B" last="Martin">Gregory B. Martin</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Lycopersicon esculentum (genetics)</term>
<term>Lycopersicon esculentum (microbiology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Leaves (microbiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Protein-Serine-Threonine Kinases (genetics)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Pseudomonas syringae (classification)</term>
<term>Pseudomonas syringae (genetics)</term>
<term>Pseudomonas syringae (metabolism)</term>
<term>Pseudomonas syringae (pathogenicity)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (metabolism)</term>
<term>Two-Hybrid System Techniques (MeSH)</term>
<term>Virulence (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Lycopersicon esculentum (génétique)</term>
<term>Lycopersicon esculentum (microbiologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Protein-Serine-Threonine Kinases (génétique)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Pseudomonas syringae (classification)</term>
<term>Pseudomonas syringae (génétique)</term>
<term>Pseudomonas syringae (métabolisme)</term>
<term>Pseudomonas syringae (pathogénicité)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Tabac (génétique)</term>
<term>Tabac (métabolisme)</term>
<term>Techniques de double hybride (MeSH)</term>
<term>Virulence (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Plant Proteins</term>
<term>Protein-Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Plant Proteins</term>
<term>Protein-Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Pseudomonas syringae</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines bactériennes</term>
<term>Pseudomonas syringae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Lycopersicon esculentum</term>
<term>Pseudomonas syringae</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Lycopersicon esculentum</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines bactériennes</term>
<term>Protéines végétales</term>
<term>Pseudomonas syringae</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Pseudomonas syringae</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Lycopersicon esculentum</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Lycopersicon esculentum</term>
<term>Plant Diseases</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines bactériennes</term>
<term>Protéines végétales</term>
<term>Pseudomonas syringae</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Pseudomonas syringae</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Pseudomonas syringae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Gene Expression Regulation, Plant</term>
<term>Molecular Sequence Data</term>
<term>Sequence Alignment</term>
<term>Sequence Homology, Amino Acid</term>
<term>Two-Hybrid System Techniques</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Données de séquences moléculaires</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Techniques de double hybride</term>
<term>Virulence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">AvrPtoB is a type III effector protein from Pseudomonas syringae pv. tomato that physically interacts with the tomato Pto kinase and, depending on the host genotype, either elicits or suppresses programmed cell death associated with plant immunity. We reported previously that avrPtoB-related sequences are present in diverse gram-negative phytopathogenic bacteria. Here we describe characterization of avrPtoB homologs from P. syringae pv. tomato T1, PT23, and JL1065, P. syringae pv. syringae B728a, and P. syringae pv. maculicola ES4326. The avrPtoB homolog from P. syringae pv. maculicola, hopPmaL, was identified previously. The four new genes identified in this study are designated avrPtoB(T1), avrPtoB(PT23), avrPtoB(JL1065), and avrPtoB(B728a). The AvrPtoB homologs exhibit 52 to 66% amino acid identity with AvrPtoB. Transcripts of each of the avrPtoB homologs were detected in the Pseudomonas strains from which they were isolated. Proteins encoded by the homologs were detected in all strains except P. syringae pv. tomato T1, suggesting that T1 suppresses accumulation of AvrPtoB(T1). All of the homologs interacted with the Pto kinase in a yeast two-hybrid system and elicited a Pto-dependent defense response when they were delivered into leaf cells by DC3000DeltaavrPtoDeltaavrPtoB, a P. syringae pv. tomato strain with a deletion of both avrPto and avrPtoB. Like AvrPtoB, all of the homologs enhanced the ability of DC3000DeltaavrPtoDeltaavrPtoB to form lesions on leaves of two susceptible tomato lines. With the exception of HopPmaL which lacks the C-terminal domain, all AvrPtoB homologs suppressed programmed cell death elicited by the AvrPto-Pto interaction in an Agrobacterium-mediated transient assay. Thus, despite their divergent sequences, AvrPtoB homologs from diverse P. syringae pathovars have conserved avirulence and virulence activities similar to AvrPtoB activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16391110</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>03</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0099-2240</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>72</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2006</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Diverse AvrPtoB homologs from several Pseudomonas syringae pathovars elicit Pto-dependent resistance and have similar virulence activities.</ArticleTitle>
<Pagination>
<MedlinePgn>702-12</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>AvrPtoB is a type III effector protein from Pseudomonas syringae pv. tomato that physically interacts with the tomato Pto kinase and, depending on the host genotype, either elicits or suppresses programmed cell death associated with plant immunity. We reported previously that avrPtoB-related sequences are present in diverse gram-negative phytopathogenic bacteria. Here we describe characterization of avrPtoB homologs from P. syringae pv. tomato T1, PT23, and JL1065, P. syringae pv. syringae B728a, and P. syringae pv. maculicola ES4326. The avrPtoB homolog from P. syringae pv. maculicola, hopPmaL, was identified previously. The four new genes identified in this study are designated avrPtoB(T1), avrPtoB(PT23), avrPtoB(JL1065), and avrPtoB(B728a). The AvrPtoB homologs exhibit 52 to 66% amino acid identity with AvrPtoB. Transcripts of each of the avrPtoB homologs were detected in the Pseudomonas strains from which they were isolated. Proteins encoded by the homologs were detected in all strains except P. syringae pv. tomato T1, suggesting that T1 suppresses accumulation of AvrPtoB(T1). All of the homologs interacted with the Pto kinase in a yeast two-hybrid system and elicited a Pto-dependent defense response when they were delivered into leaf cells by DC3000DeltaavrPtoDeltaavrPtoB, a P. syringae pv. tomato strain with a deletion of both avrPto and avrPtoB. Like AvrPtoB, all of the homologs enhanced the ability of DC3000DeltaavrPtoDeltaavrPtoB to form lesions on leaves of two susceptible tomato lines. With the exception of HopPmaL which lacks the C-terminal domain, all AvrPtoB homologs suppressed programmed cell death elicited by the AvrPto-Pto interaction in an Agrobacterium-mediated transient assay. Thus, despite their divergent sequences, AvrPtoB homologs from diverse P. syringae pathovars have conserved avirulence and virulence activities similar to AvrPtoB activity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Nai-Chun</ForeName>
<Initials>NC</Initials>
<AffiliationInfo>
<Affiliation>Boyce Thompson Institute for Plant Research, Tower Rd., Ithaca, NY 14853-1801, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abramovitch</LastName>
<ForeName>Robert B</ForeName>
<Initials>RB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Young Jin</ForeName>
<Initials>YJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Martin</LastName>
<ForeName>Gregory B</ForeName>
<Initials>GB</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C081695">avrPto protein, Pseudomonas syringae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="C084354">Pto protein, Lycopersicon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="N">Lycopersicon esculentum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044224" MajorTopicYN="N">Pseudomonas syringae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="Y">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020798" MajorTopicYN="N">Two-Hybrid System Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16391110</ArticleId>
<ArticleId IdType="pii">72/1/702</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.72.1.702-712.2006</ArticleId>
<ArticleId IdType="pmc">PMC1352197</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Nov 11;1694(1-3):181-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15546666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 May 15;19(10):2257-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10811617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Jul;45(2):397-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12123452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2003;41:215-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14527329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Aug 18;102(4):487-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Jan;18(1):43-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15672817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Mar 1;295(5560):1722-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11872842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Jun;179(12):3866-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9190801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Feb;55(3):941-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15661015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2002 Jul 1;3(4):205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20569328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 May;17(5):447-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Sep;49(5):1239-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12940984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Jun;44(6):1469-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12067337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Oct;44(1):139-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16167902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2005 Jan;151(Pt 1):269-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15632444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2003 Feb 28;219(2):151-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12620614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Aug;7(4):356-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Jul;49(2):389-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12828637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2005 Apr 1;245(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15796972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1992 Mar;174(5):1604-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1537802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10875-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10485919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Oct;54(2):353-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15469508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Jul 3;19(13):3204-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10880434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 May 31;109(5):589-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12062102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Jan 2;22(1):60-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12505984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10206-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9707625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Apr;6(4):511-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7911348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Apr;18(4):275-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15828679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1981 Dec 10;256(23):11955-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7028745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lab Clin Med. 1954 Aug;44(2):301-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13184240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Dec;17(12):1244-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11751241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8577-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12817082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1990 Feb;14(2):269-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1966276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Oct;46(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12366826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Jul;49(2):377-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12828636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Dec 20;274(5295):2060-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8953033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Feb;37(4):554-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14756767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1989 Sep 22;245(4924):1374-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2781284</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Abramovitch, Robert B" sort="Abramovitch, Robert B" uniqKey="Abramovitch R" first="Robert B" last="Abramovitch">Robert B. Abramovitch</name>
<name sortKey="Kim, Young Jin" sort="Kim, Young Jin" uniqKey="Kim Y" first="Young Jin" last="Kim">Young Jin Kim</name>
<name sortKey="Martin, Gregory B" sort="Martin, Gregory B" uniqKey="Martin G" first="Gregory B" last="Martin">Gregory B. Martin</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Lin, Nai Chun" sort="Lin, Nai Chun" uniqKey="Lin N" first="Nai-Chun" last="Lin">Nai-Chun Lin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000760 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000760 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16391110
   |texte=   Diverse AvrPtoB homologs from several Pseudomonas syringae pathovars elicit Pto-dependent resistance and have similar virulence activities.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16391110" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024